PhSeOTf-Et ${ }_{3} \mathrm{~N} \cdot \mathbf{3 H F}$ and $\mathrm{PhSeSbF}_{6}-\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ as new $\mathrm{PhSe}-\mathrm{F}$ equivalents in the fluoroselenenylation of acetylenes

Helmut Poleschner * and Konrad Seppelt
Institut für Chemie, Anorganische and Analytische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, D-14195 Berlin, Germany.E-mail: hpol@chemie.fu-berlin.de. E-mail: seppelt@chemie.fu-berlin.de.; Fax: (internat.) +49(30)838 53310
Received (in Cambridge, UK) 12th August 2002, Accepted 10th October 2002
First published as an Advance Article on the web 5th November 2002

The novel reagents $\mathrm{PhSeOTf}-\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ and $\mathrm{PhSeSbF}_{6}-\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ act as $\mathrm{PhSe}-\mathrm{F}$ equivalents in the fluoroselenenylation of alkynes. Oct-4-yne, cycloundecyne and cyclododecyne, as well as the unsymmetrical alkynes $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Me}$ and $\mathrm{Bu}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Et},{ }^{i} \operatorname{Pr}\right.$ and $\left.{ }^{\mathrm{H}} \mathrm{Bu}\right)$ give the corresponding (E)-fluoro(phenylseleno)alkenes in preparative yields. The reagent $\mathrm{PhSeOTf}-\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ gives a similar product composition of regioisomers to $\mathrm{Ph}_{2} \mathrm{Se}_{2}-\mathrm{XeF}_{2}$ in addition reactions to $\mathrm{Bu}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}$. This is indicative of a similar reaction mechanism of the reagents. Probably a selenirenium ion acts as an intermediate. X-Ray single crystal structure analysis of (E)-1-fluoro-2phenylselenocycloundecene confirms the trans-addition of $[\mathrm{PhSe}-\mathrm{F}]$ to cycloundecyne.

Introduction

Various $\mathrm{PhSe}-\mathrm{F}$ equivalents have been described for the selective introduction of fluorine via addition reactions to organic substrates, for example, $\mathrm{PhSeBr}-\mathrm{AgF}$-ultrasound, ${ }^{1,2} \mathrm{PhSeCl}$ $\mathrm{AgF}-\mathrm{MeCN},{ }^{3} \mathrm{~N}$-Phenylselenophthalimide (NPSP) $-\mathrm{Py} \cdot 9 \mathrm{HF},{ }^{46}$ NPSP- $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF},^{6,7} \mathrm{Ph}_{2} \mathrm{Se}_{2}-\mathrm{XeF}_{2}{ }^{8,9}$ and the electrochemical oxidation of $\mathrm{Ph}_{2} \mathrm{Se}_{2}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF} .^{10,11}$ We have reported an efficient synthesis of (E)-fluoro(organylseleno)alkenes by fluoroselenenylation of alkynes by the RSe-F equivalents $\mathrm{R}_{2} \mathrm{Se}_{2}-\mathrm{XeF}_{2}{ }^{12,13}$ and $\mathrm{RSe}-\mathrm{EMe}_{3}-\mathrm{XeF}_{2}{ }^{14}(\mathrm{E}=\mathrm{Si}$, $\mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb})$. The addition of $[\mathrm{PhSe}-\mathrm{F}]$ to the unsymmetrical alkynes $\mathrm{Bu}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Et},{ }^{i} \mathrm{Pr}\right.$ and $\left.{ }^{\dagger} \mathrm{Bu}\right)$ yields mixtures of regioisomers (Scheme 1). The product composition as a

Scheme 1 Regioisomers from the addition of $\mathrm{Ph}_{2} \mathrm{Se}_{2}-\mathrm{XeF}_{2}$ to $\mathrm{Bu}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}$.
function of the size of R has been interpreted with the assumption of an intermediate selenirenium ion \mathbf{C} (Scheme 1) and its nucleophilic ring opening reaction by the fluoride ion. ${ }^{12}$

A selenirenium ion has been characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy in the reaction of $\mathrm{PhSe}^{+} \mathrm{SbF}_{6}{ }^{-}$with but-2-yne. ${ }^{15}$ If selenirenium ions are indeed intermediates in the fluoroselenenylation reactions of alkynes, ions generated from $\mathrm{PhSe}^{+} \mathrm{SbF}_{6}{ }^{-}$and $\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}$ should also react with external fluoride forming fluoro(phenylseleno)alkenes. Such a reaction should give, with $\mathrm{Bu}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}$, a similar product composition of regioisomers as the reaction with $\mathrm{Ph}_{2} \mathrm{Se}_{2}-\mathrm{XeF}_{2}$. By combination of such strong benzeneselenenylation reagents as $\mathrm{PhSeSbF} \mathrm{F}_{6},{ }^{15} \mathrm{PhSeOTf},{ }^{16}$ or $\mathrm{PhSeOTs}{ }^{17}$ with suitable fluoride sources, new, highly reactive selenenyl fluoride equivalents should be obtainable which do not need expensive XeF_{2}. The investigation of such systems is of mechanistic and preparative interest.

Results and discussion

The reaction of $\mathrm{PhSe}^{+} \mathrm{X}^{-}\left(\mathrm{X}^{-}\right.$are anions of low nucleophilicity such as $\mathrm{SbF}_{6}^{-}, \mathrm{TfO}^{-}, \mathrm{BF}_{4}^{-}$and $\mathrm{TsO}{ }^{-}$) with alkynes in the presence of $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ was investigated. The mild F^{-}donor $\mathrm{Et}_{3} \mathrm{~N}$. 3HF is easy to handle and has already been successfully used in numerous syntheses. ${ }^{18}$
The seleno electrophiles are generated by bromination of $\mathrm{Ph}_{2} \mathrm{Se}_{2}$ with Br_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and subsequent reaction of the so obtained PhSeBr with the silver salts $\mathrm{Ag}^{+} \mathrm{X}^{-}\left(\mathrm{X}^{-}: \mathrm{SbF}_{6}{ }^{-}, \mathrm{TfO}^{-}\right.$, $\left.\mathrm{BF}_{4}^{-}, \mathrm{TsO}^{-}\right)$. The thus formed $\mathrm{PhSe}^{+} \mathrm{X}^{-}$then reacts at $0^{\circ} \mathrm{C}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ with oct-4-yne $\mathbf{1}$ as model alkyne, forming the expected 4 -fluoro-5-phenylselenooct-4-ene 9 . The relative molar amounts used were $\mathrm{PhSe}^{+} \mathrm{X}^{-}$:octyne: $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ $=1: 1: 3$, see Scheme $2 .{ }^{15-17}$

Scheme 2 Reactions of $\mathrm{PhSeX}-\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}\left(\mathrm{X}^{-}: \mathrm{SbF}_{6}^{-}, \mathrm{TfO}^{-}, \mathrm{BF}_{4}{ }^{-}\right.$, TsO^{-}) with oct-4-yne.

This reaction as a synthetic method is accompanied by some problems. In almost all experiments the undesired by product bromo(phenylseleno)oct-4-ene 10 is detected by ${ }^{77} \mathrm{Se}$ NMR spectroscopy ($\delta=398.2 \mathrm{ppm}$): with AgSbF_{6} up to 6%, with $\mathrm{AgOTf} 8-16 \%$ and with AgBF_{4} and AgOTs even up to 60%, as measured by ${ }^{77}$ Se NMR signal integration. Compound $\mathbf{1 0}$ was independently synthesized by addition of PhSeBr to oct-4-yne in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (${ }^{[7} \mathrm{Se}$ NMR: $\delta=398.8 \mathrm{ppm}$). This method for the preparation of $\mathrm{PhSe}^{+} \mathrm{X}^{-}$is probably incomplete due to the low
solubility of the silver salts in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Unchanged PhSeBr can then react to give 10. Yields with AgSbF_{6} are moderate, $50-56 \%$, with AgOTf somewhat higher, $64-80 \%$. In other publications ArSeOTf, prepared from $\mathrm{ArSeBr}+\mathrm{AgOTf}$ in alcohols or MeCN as solvents, is successfully used in reactions with olefins. ${ }^{19-21}$ But these solvents cannot be used for our reaction since they could interfere directly with the reaction. Alkenes undergo oxyselenenylation with alcohols ${ }^{19,20}$ and amidoselenenylation with $\mathrm{MeCN}{ }^{21}$ We obtained a complex mixture without fluoroselenenylation in the reaction of PhSeOTf with $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ and $\mathbf{1}$ in MeCN .

Bromine and the silver-free preparation of benzeneselenenyl triflate PhSeOTf from benzeneseleninic anhydride $(\mathrm{PhSeO})_{2} \mathrm{O}$, $\mathrm{Ph}_{2} \mathrm{Se}_{2}$ and trifluoromethanesulfonic acid anhydride $\mathrm{Tf}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ according to literature ${ }^{22}$ is an improvement for our method (Scheme 3). PhSeOTf thus obtained in situ and in

Alkyne	R^{1}	R^{2}	Fluoride	Yield / \%	A : B $\mathrm{PhSeOTf} / \mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$	$\begin{aligned} & \text { A: B } \\ & \mathrm{Ph}_{2} \mathrm{Se}_{2} / \mathrm{XeF}_{2}{ }^{12} \end{aligned}$
1	Pr	Pr	9	70		
2		$\left.{ }_{2}\right)_{9}-$	11	50		
3		2) 1^{-}	12	71		
4	Ph	Me	13	27		
5	Bu	Me	14a/b	67	51:49	53: 47
6	Bu	Et	15a/b	69	55:45	55:45
7	Bu	'Pr	16a/b	58	76 : 24	80:20
8	Bu	${ }^{t} \mathrm{Bu}$	17a/b	25	94: 6	100:0

Scheme 3 Reactions of PhSeOTf-Et ${ }_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ with alkynes.
homogenous solution reacts with oct-4-yne in the presence of $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ to give fluoro(phenylseleno)octene 9 in good yields and high purity. Thus the $\mathrm{PhSeOTf}-\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ reagent was reacted with a number of other alkynes: cycloundecyne 2, cyclododecyne 3, unsymmetrical alkynes $\mathrm{Ph}-\mathrm{C}=\mathrm{C}-\mathrm{Me} \mathrm{4}$, and $\mathrm{Bu}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}^{2}$ 5-8 ($\mathrm{R}^{2}=\mathrm{Me}$, Et, $\left.{ }^{\mathrm{C}} \mathrm{Pr},{ }^{\dagger} \mathrm{Bu}\right)$. A 50% excess of the selenium reagent (molar ratio $\mathrm{PhSeOTf}:$ alkyne: $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}=$ 1.5:1:3) was used. In all cases the synthesis of fluoro(phenylseleno)alkenes $\mathbf{9}, \mathbf{1 3}$, and $\mathbf{1 4 a} / \mathbf{b}-\mathbf{1 7 a} / \mathrm{b}$ as well as of fluoro(phenylseleno)cycloalkenes $\mathbf{1 1}$ and $\mathbf{1 2}$ was successful, Scheme 3.

The $\mathrm{PhSeOTf}-\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ reagent shows somewhat higher yields and shorter rection times in the fluoroselenenylation of acetylenes than the earlier described reagents $\mathrm{PhSeBr}-\mathrm{AgF}-$ ultrasound, ${ }^{2}$ NPSP-Et ${ }_{3} \mathrm{~N} \cdot 3 \mathrm{HF},{ }^{6,7}$ and the electrochemical oxidation of $\mathrm{Ph}_{2} \mathrm{Se}_{2}$ in presence of $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF} .^{10,11}$ The yields of products from individual compounds follow the trend of the $\mathrm{Ph}_{2} \mathrm{Se}_{2}-\mathrm{XeF}_{2}$ reagent. ${ }^{12}$

High resolution mass spectra proved the assumed elemental composition of the synthesized compounds. NMR spectra of the products agree very well with those obtained from the $\mathrm{Ph}_{2} \mathrm{Se}_{2}-\mathrm{XeF}_{2}$ and $\mathrm{PhSe}-\mathrm{EMe}_{3}-\mathrm{XeF}_{2}$ reagents. ${ }^{12,14} \mathbf{1 4 a / b} \mathbf{- 1 7 a} \mathbf{a} \mathbf{b}$ were analyzed as mixtures. The assignment of the ${ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{77}$ Se NMR spectra have been reported by us before. ${ }^{23}$ We can assign the ${ }^{77} \mathrm{Se}$ and ${ }^{19} \mathrm{~F}$ signals to the components of mixtures of F/Se-compounds by means of new ${ }^{77} \mathrm{Se},{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ HETCOR 2D NMR measurements. ${ }^{24}$

Of interest is the distribution of regioisomers \mathbf{A} and \mathbf{B} in the addition to $\mathrm{Bu}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}^{2}\left(\mathrm{R}^{2}=\mathrm{Me}, \mathrm{Et},{ }^{i} \mathrm{Pr},{ }^{~}{ }^{\mathrm{Bu}}\right)$. The $\mathbf{A}: \mathbf{B}$ ratio is close to $1: 1$ with $51: 49$ for $\mathrm{Bu} / \mathrm{Me}$ and $55: 45$ for $\mathrm{Bu} / \mathrm{Et}$, but increases to $76: 24$ for $\mathrm{Bu} / / \mathrm{Pr}$ and particularly to $94: 6$ for $\mathrm{Bu} / \mathrm{Bu}$. The $\mathbf{A}: \mathbf{B}$ ratios were measured by ${ }^{19} \mathrm{~F}$ and ${ }^{77} \mathrm{Se}$ NMR signal integrations, and both values give the same results. The strong similarity of the $\mathbf{A}: \mathbf{B}$ ratio for both reagents $\mathrm{PhSeOTf}-\mathrm{Et}_{3} \mathrm{~N} \cdot$ 3 HF and $\mathrm{Ph}_{2} \mathrm{Se}_{2}-\mathrm{XeF}_{2}$ shows that the mechanisms of both reactions are closely related. For both reagents one can assume the intermediate formation of a selenirenium ion. Nucleophilic attack of the fluoride ion occurs preferentially at the Bu side in the case of increased steric hindrance by R^{2} and \mathbf{A} becomes the main isomer (path a of Scheme 3). The formation of the B isomer is hindered (path b of Scheme 3).

X-Ray single crystal structure of 1-fluoro-2phenylselenocycloundecene 11

X-Ray structures of the (E)-cycloundecene ring have been published only for derivatives of cycloundecene-1-carboxylic acid. ${ }^{25}$ The X-ray crystal structure analysis of fluoro(phenylseleno)cycloundecene 11 is shown in Figure 1. It establishes that the fluoroselenenylation of cycloalkynes is also a transaddition, [dihedral angles F-C17-C7-Se 179.9(4) ${ }^{\circ}$, $\mathrm{C} 16-\mathrm{C} 17-$ C7-C8-177.9(8) ${ }^{\circ}$]. We have already reported on the transaddition of $[\mathrm{PhSe}-\mathrm{F}]$ to acyclic alkynes with $\mathrm{Ph}_{2} \mathrm{Se}_{2}-\mathrm{XeF}_{2}{ }^{13}$ and $\mathrm{PhSe}-\mathrm{EMe}_{3}-\mathrm{XeF}_{2}{ }^{14}(\mathrm{E}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb})$ and the X -ray structures of the products. $\mathrm{C}-\mathrm{F}, \mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{Se}$ bonds in the central $\mathrm{F}-\mathrm{C}=\mathrm{C}-\mathrm{Se}$ molecular fragment of $\mathbf{1 1}$ are shorter than in acyclic fluoro seleno alkenes. ${ }^{13,14}$ The large $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle at the fluorinated C atom [C7-C17-C16 129.5(6) ${ }^{\circ}$] and the small $\mathrm{F}-\mathrm{C}-\mathrm{C}$ angle towards the alkyl chain [F-C17-C16 $\left.111.1(5)^{\circ}\right]$ are characteristic for such fluoro alkenes. ${ }^{13,14}$ The general feature of this molecule is that the best plane of the $\left(\mathrm{CH}_{2}\right) n$ ring is perpendicular to the $\mathrm{F}-\mathrm{C}=\mathrm{C}-\mathrm{Se}$ plane. Viewed in the direction of the C-F bond, a triangular form is visible that is only interrupted at the corners by the C8-C9 and C15-C16 bonds. The phenyl ring plane is situated opposite to the eleven-membered ring and also almost perpendicular to the $\mathrm{F}-\mathrm{C}=\mathrm{C}-\mathrm{Se}$ plane [C1-Se-C7-C17 88.3(5) ${ }^{\circ}$]. In contrast to an acyclic fluoro(arylseleno) alkene ${ }^{14}$ the phenyl ring is only slightly torsioned against the $\mathrm{Se}-\mathrm{C} 7$ bond [C7-Se-C1-C2 $9.7(4)^{\circ}{ }^{\circ}$. The enlargement of almost all bond angles at the sp^{3}-hybridized C atoms of the ring as compared to 109.45° indicates considerable ring strain. The dihedral angles in the ring show six gauche conformations with angles around 60° [Se-C7-C8-C9 -68.2(9) ${ }^{\circ}$, $\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7-59.7(11)^{\circ}$, C13-C12-C11-C10 61.6(13) ${ }^{\circ}$, C11-C12-C13-C14 77.9(13) ${ }^{\circ}$, C17-C16-C15-C14-57.0(11) ${ }^{\circ}$, C15-C16-C17-F -68.5(7) ${ }^{\circ}$]. Along two bonds ($\mathrm{C} 10-\mathrm{C} 11$ and $\mathrm{C} 13-\mathrm{C} 14$) an anti conformation with angles about 155° is observed. Finally, along two bonds (C9-C10 and C14-C15) an unfavorable almost eclipsed conformation exists [C8-C9-C10-C11 $\left.99.2(10)^{\circ}, \mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16102.2(11)^{\circ}\right]$. If the elevenmembered ring is viewed from the double bond, the atoms C11, C12 and C13 appear almost linear and parallel to the $\mathrm{C}=\mathrm{C}$ bond.

The planar-chiral trans-cycloalkene $\mathbf{1 1}$ is a racemic mixture. The enantiomers crystallize separately. The measured crystal contained the S enantiomer according to the rules of chirality. ${ }^{26,27}$

Fig. 1 ORTEP-representation of the molecular structure of (E)-1-fluoro-2-phenylselenocycloundecene $\mathbf{1 1}$ (thermal ellipsoids of 40% probability, viewed from direction of the phenyl group (above) and along the $\mathrm{C}-\mathrm{F}$ bond (below). Selected bond lengths/pm and angles $/{ }^{\circ}$: Se-C7 190.6(6), Se-C1 190.7(4), F-C17 135.3(7), C7-C17 126.8(9), C7C8 153.4(11), C16-C17 146.1(12); C7-Se-C1 99.71(19), C7-C17-C16 129.5(6), C17-C7-Se 121.6(6), C17-C7-C8 121.3(6), F-C17-C16 111.1(5); F-C17-C7-Se 179.9(4), C16-C17-C7-C8-177.9(8), Se-C7-C8-C9 -68.2(9), C10-C9-C8-C7 -59.7(11), C8-C9-C10-C11 $99.2(10), \mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9-150.0(8), \mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$ 61.6(13), C11-C12-C13-C14 77.9(13), C12-C13-C14-C15 -159.8(9), C13-C14-C15-C16 102.2(11), C17-C16-C15-C14 -57.0(11), C15-C16-C17-F -68.5(7), C1-Se-C7-C17 88.3(5), C7-Se-C1-C2 9.7(4).

Experimental

Mass EI spectra were measured with a Finnigan MAT 711 instrument at 80 eV electron excitation. High-resolution spectra were measured by the peak-match method using PFK as the reference substance. NMR spectra were measured with a JEOL JNM-LA 400 spectrometer in 5 mm tubes at room temperature ${ }^{13} \mathrm{C}$ at $100.40 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ reference TMS in $\left.\mathrm{CDCl}_{3}, \delta=0 \mathrm{ppm}\right)$,
${ }^{19} \mathrm{~F}$ at $376.00 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right.$ reference: external CFCl_{3} in CDCl_{3},

Table 1 Crystallographic and experimental data for $\mathbf{1 1}$

Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{FSe}$
Molecular weight	325.32
Temperature	$-150{ }^{\circ} \mathrm{C}$
Crystal system	Monoclinic
	$a=709.9(2) \mathrm{pm}$
	$b=635.8(1) \mathrm{pm}$
	$c=1676.6(3) \mathrm{pm}$
Space group	$\beta=90.42(1)^{\circ}$
Volume	$P 2_{1}$
Z	$756.8 \times 10^{6} \mathrm{pm}^{3}$
Calculated density	2
Absorption coefficient	$1.428 \mathrm{~g} \mathrm{~cm}^{-3}$
$F(000)$	$2.48 \mathrm{~mm}^{-1}$
Crystal size	336.0
Theta range for data collection	$0.3 \times 0.3 \times 0.2 \mathrm{~mm}$
Max. and min. transmission	$1.21-30.93^{\circ}$
Data restraints/parameters	$1.000 / 0.621$
Goodness-of-fit on F^{2}	$4699 / 1 / 175$
Final R values $[I \geq 2 \sigma(I)]$	1.070
R indices (all data)	0.0646
Absolute structure parameter	0.0675
	0.1028

$\delta=0$), ${ }^{77} \mathrm{Se}$ at $76.20 \mathrm{MHz}\left({ }^{77} \mathrm{Se}\right.$ reference: $60 \mathrm{vol} \% \mathrm{Me}_{2} \mathrm{Se}$ in $\left.\mathrm{CDCl}_{3}, \delta=0\right)$
$\mathrm{Ph}_{2} \mathrm{Se}_{2}, \quad(\mathrm{PhSeO})_{2} \mathrm{O}, \mathrm{Tf}_{2} \mathrm{O}, \mathrm{AgBF}_{4}$ (Fluka), $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$, $\mathrm{AgSbF}_{6}, \mathrm{AgOTf}$ (Aldrich), $\mathrm{AgOTs}, 1$ (Merck) and 4 (Acros) are commercial products. 5, ${ }^{28} 6,{ }^{29} 7^{30}$ and $\mathbf{8}^{31}$ were obtained following literature procedures. Cycloalkynes $\mathbf{2}$ and $\mathbf{3}$ were prepared by thermolysis of the corresponding cycloalkeno-1,2,3selenadiazole over copper powder. ${ }^{32}$

X-Ray crystal structure determination

A suitable crystal was mounted on a Bruker SMART CCD 1000 TM diffractometer and cooled to $-150{ }^{\circ} \mathrm{C}$. Mo-K $\alpha(\lambda=$ 71.1069 pm) radiation, graphite monochromator, scan width of 0.3° in ω, exposure time of $20 \mathrm{~s} /$ frame, and detector crystal distance 40 mm were used. A full shell of data up to $2 \theta=62^{\circ}$ was measured by 1800 frames. Data were reduced to intensities, corrected for background, and a semiempirical absorption correction was applied (SADABS). The structure was solved and refined by use of the SHELXL programs. ${ }^{33,34}$ For experimental details of the crystal structure see Table 1. \dagger

Reactions of 1 with $\mathrm{PhSeX}[\mathrm{PhSeBr}+\mathrm{AgX}]$ and $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathbf{3 H F}$: general procedure

A 50 ml Schlenk vessel containing $2 \mathrm{mmol} \mathrm{Ph}_{2} \mathrm{Se}_{2}(624 \mathrm{mg})$ was filled with 20 ml dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on a vacuum line by cooling to $-196^{\circ} \mathrm{C} . \mathrm{Br}_{2}\left(2 \mathrm{ml}, 1 \mathrm{M}\right.$ in $\left.\mathrm{CCl}_{4}, 2 \mathrm{mmol}\right)$ was injected at room temperature under argon, and the mixture was magnetically stirred for 15 min . The silver salt AgX ($4 \mathrm{mmol} ; \mathrm{X}^{-}: \mathrm{SbF}_{6}{ }^{-}$, $\mathrm{TfO}^{-}, \mathrm{BF}_{4}^{-}, \mathrm{TsO}^{-}$) was added at $0{ }^{\circ} \mathrm{C}$ under exclusion of moisture and the reaction was stirred for 30 min at this temperature. Into this dark green suspension simultaneously $12 \mathrm{mmol} \mathrm{Et}_{3} \mathrm{~N}$ $3 \mathrm{HF}(1.93 \mathrm{~g})$ and 4 mmol oct-4-yne $\mathbf{1}(441 \mathrm{mg})$ were injected, and the color changed immediately to light yellow. The mixture was further stirred for 1 h at $0^{\circ} \mathrm{C}$ and 3 h at room temperature, $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ was added. AgBr was removed by filtration of the mixture over Celite and washing with $60 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$. The aqueous solution was extracted twice with $50 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$, and the organic layers were washed consecutively with $50 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}, 50 \mathrm{ml}$ NaHCO_{3} solution, $50 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and 50 ml saturated NaCl solution, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Colorless oils were obtained after removal of the solvent and chromatography through a 10 cm long, 2 cm diameter silica gel column eluting with hexane.

[^0]Reaction with AgSbF_{6} : yield 9: 0.57-0.64 g(50-56\%); sample contained 6% 10. Yield 9 if 1.25 equiv. $\mathrm{PhSeSbF}_{6}$ used: 0.71 g (62\%) with $6 \% 10$.
Reaction with AgOTf: yield 9: 0.73-0.91 g (64-80\%); sample contained 8-16\% $\mathbf{1 0}$.

Reaction with AgBF_{4} : mixture of $\mathbf{9}$ and $\mathbf{1 0}$ with $60 \% \mathbf{1 0}$.
Reaction with AgOTs: mixture of $\mathbf{9}$ and $\mathbf{1 0}$ with $57 \% \mathbf{1 0}$.

Reaction of alkynes 1-8 with $\mathrm{PhSeOTf}\left[(\mathrm{PhSeO})_{2} \mathrm{O}+\mathrm{Ph}_{2} \mathrm{Se}_{2}\right.$ $\left.+\mathrm{Tf}_{2} \mathrm{O}\right]$ and $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$: general procedure

A 50 ml Schlenk vessel was filled with $1 \mathrm{mmol}(360 \mathrm{mg})$ $(\mathrm{PhSeO})_{2} \mathrm{O}$ and $2 \mathrm{mmol}(624 \mathrm{mg}) \mathrm{Ph}_{2} \mathrm{Se}_{2}$ under exclusion of moisture. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was condensed in at $-196^{\circ} \mathrm{C}$. At $0^{\circ} \mathrm{C} \mathrm{Tf}_{2} \mathrm{O}(3 \mathrm{mmol}, 846 \mathrm{mg})$ was injected under argon, followed by 5 min magnetic stirring. Immediately a deep red color was formed, and the solution became opaque. Alkyne 1-8 (4 mmol) and $12 \mathrm{mmol} \mathrm{Et}{ }_{3} \mathrm{~N} \cdot 3 \mathrm{HF}(1.93 \mathrm{~g})$ were injected simultaneously, and the deep red color changed to light yellow. After 1 h of stirring at $0{ }^{\circ} \mathrm{C}$ and 4 h at room temperature (1,5-7) or 6 h $(\mathbf{2 - 4}, \mathbf{8}), \mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ was added, and the aqueous solution was extracted twice with $70 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed consecutively with $60 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}, 60 \mathrm{ml} \mathrm{NaHCO} 3$ solution, 60 ml $\mathrm{H}_{2} \mathrm{O}$, and 60 ml saturated NaCl solution, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. A solution of $\mathbf{1 3}$ was shaken with 1 g NaBH 4420 ml $\mathrm{H}_{2} \mathrm{O}$ until the yellow color disappeared, then washed with twice $100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. Further treatment was similar to that described above.
(\boldsymbol{E})-4-Fluoro-5-phenylselenooct-4-ene 9. Yield (colorless oil): $0.8 \mathrm{~g}(70 \%)$; HR-MS: $\mathrm{m} / \mathrm{z} \mathrm{M}^{+}: 286.06530$ (calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{FSe}: 286.06359$, related to $\left.{ }^{80} \mathrm{Se}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.51(\mathrm{C}-1)$, $20.42(\mathrm{C}-2), 33.30\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=28.1 \mathrm{~Hz}, \mathrm{C}-3\right), 163.34\left({ }^{1} J_{\mathrm{F}, \mathrm{C}}=267.1\right.$ $\mathrm{Hz}, \mathrm{C}-4), 109.84\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=20.7 \mathrm{~Hz}, \mathrm{C}-5\right), 32.45\left({ }^{3} J_{\mathrm{FCC}}=5.8 \mathrm{~Hz}\right.$, $\mathrm{C}-6), 21.79\left({ }^{4} \mathrm{~J}_{\mathrm{F}, \mathrm{C}}=1.7 \mathrm{~Hz}, \mathrm{C}-7\right), 13.41(\mathrm{C}-8) ; \mathrm{Ph}: 130.93\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=\right.$ $1.7 \mathrm{~Hz}, i-\mathrm{C}), 130.44\left({ }^{2} J_{\mathrm{Se}, \mathrm{C}}=11.6 \mathrm{~Hz}, o-\mathrm{C}\right), 129.15(m-\mathrm{C}), 126.40$ $(p-\mathrm{C}) ; \delta_{\mathrm{F}}-91.84\left(\mathrm{t},{ }^{3} J_{\mathrm{F}, \mathrm{H}}=23.0 \mathrm{~Hz}\right) ; \delta_{\mathrm{Se}} 335.1\left({ }^{3} J_{\mathrm{Se}, \mathrm{F}}=16.6 \mathrm{~Hz}\right)$.
(\boldsymbol{E})-1-Fluoro-2-phenylselenocycloundecene 11. Yield: 0.65 g (50%), colorless crystals, mp $52.5-53.5^{\circ} \mathrm{C}(\mathrm{MeOH})$; HR-MS: $\mathrm{m} / \mathrm{z} \mathrm{M}^{+}: 326.09643$ (calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{FSe}: 326.09489$, related to $\left.{ }^{80} \mathrm{Se}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 163.28\left({ }^{1} J_{\mathrm{F}, \mathrm{C}}=265.3 \mathrm{~Hz}, \mathrm{C}-1\right)$, $112.15\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=20.2 \mathrm{~Hz}, \mathrm{C}-2\right), 31.38\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=5.0 \mathrm{~Hz}, \mathrm{C}-3\right), 31.43$ $\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=28.9 \mathrm{~Hz}, \mathrm{C}-11\right), 24.50\left(J_{\mathrm{F}, \mathrm{C}}=1.7 \mathrm{~Hz}\right), 24.70,25.46\left(J_{\mathrm{F}, \mathrm{C}}=\right.$ $2.1 \mathrm{~Hz}), 25.71,26.03\left(J_{\mathrm{F}, \mathrm{C}}=2.1 \mathrm{~Hz}\right), 26.31,26.69$; $\mathrm{Ph}: 130.92$ $\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=1.2 \mathrm{~Hz}, i-\mathrm{C}\right), 130.55\left({ }^{2} J_{\mathrm{Se}, \mathrm{C}}=12.0 \mathrm{~Hz}, o-\mathrm{C}\right), 129.14(\mathrm{~m}-\mathrm{C})$, $126.46(p-\mathrm{C}) ; \delta_{\mathrm{F}}-89.93(\mathrm{~s}) ; \delta_{\mathrm{se}} 337.4$ (s).
E)-1-Fluoro-2-phenylselenocyclododecene 12. Yield (colorless oil): $0.96 \mathrm{~g}(71 \%)$; HR-MS: $m / \mathrm{M} \mathrm{M}^{+}$: 340.11355 (calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{FSe}: 340.11054$, related to $\left.{ }^{80} \mathrm{Se}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 163.64$ $\left({ }^{1} J_{\mathrm{F}, \mathrm{C}}=265.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{Se}, \mathrm{C}}=16.1 \mathrm{~Hz}, \mathrm{C}-1\right), 110.01\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=20.7 \mathrm{~Hz}\right.$, $\left.{ }^{1} J_{\mathrm{Se}, \mathrm{C}}=99.7 \mathrm{~Hz}, \mathrm{C}-2\right), 28.46\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=5.0 \mathrm{~Hz}, \mathrm{C}-3\right), 31.04\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=\right.$ $28.9 \mathrm{~Hz}, \mathrm{C}-12$), 23.77, 23.92, 24.47, 25.29 (double intensities), $25.36\left(J_{\mathrm{F}, \mathrm{C}}=1.7 \mathrm{~Hz}\right), 25.73,26.40$; Ph: $130.69\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=1.2 \mathrm{~Hz}\right.$, i-C), $130.55\left({ }^{2} J_{\mathrm{Se}, \mathrm{C}}=11.6 \mathrm{~Hz}, o-\mathrm{C}\right), 129.11(m-\mathrm{C}), 126.42(p-\mathrm{C})$; $\delta_{\mathrm{F}}-88.32\left(\mathrm{~d},{ }^{3} J_{\mathrm{F}, \mathrm{H}}=22.0 \mathrm{~Hz}\right) ; \delta_{\mathrm{Se}} 325.1\left({ }^{3} J_{\mathrm{Se}, \mathrm{F}}=19.4 \mathrm{~Hz}\right)$.
(E)-1-Fluoro-1-phenyl-2-phenylselenoprop-1-ene 13. Yield (colorless oil): 0.31 g (27%); HR-MS: $m / z \quad \mathrm{M}^{+}: 292.01834$ (calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FSe}$ 292.01665, related to ${ }^{80} \mathrm{Se}$); δ_{C} $\left(\mathrm{CDCl}_{3}\right) 157.36\left({ }^{1} J_{\mathrm{F}, \mathrm{C}}=258.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{Se}, \mathrm{C}}=20.9 \mathrm{~Hz}, \mathrm{C}-1\right), 106.28$ $\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=24.0 \mathrm{~Hz},{ }^{1} J_{\mathrm{Se}, \mathrm{C}}=104.8 \mathrm{~Hz}, \mathrm{C}-2\right), 18.59\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=7.4 \mathrm{~Hz}\right.$, C-3); Ph: $132.52\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=29.4 \mathrm{~Hz}, i-\mathrm{C}\right), 128.74\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=4.5 \mathrm{~Hz}\right.$, $o-\mathrm{C}), 127.76(m-\mathrm{C}), 129.29\left({ }^{5} J_{\mathrm{F}, \mathrm{C}}=1.2 \mathrm{~Hz}, p-\mathrm{C}\right) ; \mathrm{SePh}: 129.72$ $\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=1.2 \mathrm{~Hz}, i-\mathrm{C}\right), 131.74\left({ }^{2} J_{\mathrm{Se}, \mathrm{C}}=11.6 \mathrm{~Hz}, o-\mathrm{C}\right), 129.18(m-\mathrm{C})$, $127.00(p-\mathrm{C}) ; \delta_{\mathrm{F}}-84.41\left({ }^{4} J_{\mathrm{Fe}, \mathrm{H}}=3.4 \mathrm{~Hz}\right) ; \delta_{\mathrm{Se}} 397.7\left({ }^{3} J_{\mathrm{Se}, \mathrm{F}}=\right.$ 33.5 Hz).
(E)-3-Fluoro-2-phenylselenohept-2-ene 14a and (E)-2-fluoro-3-phenylselenohept-2-ene 14b. Yield (colorless oil): 0.73 g (67%);

HR-MS: $m / z \quad \mathrm{M}^{+}$: 272.04922 (calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{FSe}$: 272.04794, related to ${ }^{80} \mathrm{Se}$).

14a: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.75\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=7.9 \mathrm{~Hz}, \mathrm{C}-1\right), 103.64\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=\right.$ $21.5 \mathrm{~Hz} \mathrm{C}-2), 162.81\left({ }^{1} J_{\mathrm{F}, \mathrm{C}}=265.9 \mathrm{~Hz}, \mathrm{C}-3\right), 30.96\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=28.1\right.$ $\left.\mathrm{Hz}, \mathrm{C}-4), 29.08\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=0.8 \mathrm{~Hz}, \mathrm{C}-5\right), 22.14(\mathrm{C}-6), 13.89, \mathrm{C}-7\right)$; $\mathrm{Ph}: 130.38\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=2.1 \mathrm{~Hz}, i-\mathrm{C}\right), 130.76\left({ }^{2} J_{\mathrm{Se}, \mathrm{C}}=11.6 \mathrm{~Hz}, o-\mathrm{C}\right)$, $129.19(m-\mathrm{C}), 126.55(p-\mathrm{C}) ; \delta_{\mathrm{F}}-91.83\left(\mathrm{t},{ }^{3} J_{\mathrm{F}, \mathrm{H}}=23.1 \mathrm{~Hz}, \mathrm{q}\right.$, $\left.{ }^{4} J_{\mathrm{F}, \mathrm{H}}=3.3 \mathrm{~Hz}\right) ; \delta_{\mathrm{Se}} 378.4\left({ }^{3} J_{\mathrm{Se}, \mathrm{F}}=18.7 \mathrm{~Hz}\right)$.

14b: $\delta_{\mathrm{C}} 17.72\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=31.0 \mathrm{~Hz}, \mathrm{C}-1\right), 160.16\left({ }^{1} J_{\mathrm{F}, \mathrm{C}}=263.8 \mathrm{~Hz}\right.$, $\mathrm{C}-2), 109.82\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=20.3 \mathrm{~Hz}, \mathrm{C}-3\right), 30.46\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=6.2 \mathrm{~Hz}, \mathrm{C}-4\right)$, $30.65\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=1.7 \mathrm{~Hz}, \mathrm{C}-5\right), 22.14(\mathrm{C}-6), 13.85(\mathrm{C}-7)$; $\mathrm{Ph}: 130.88$ $\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=2.1 \mathrm{~Hz}, i-\mathrm{C}\right), 130.25\left({ }^{2} J_{\mathrm{Se}, \mathrm{C}}=12.0 \mathrm{~Hz}, o-\mathrm{C}\right), 129.16(\mathrm{~m}-\mathrm{C})$, $126.37(p-\mathrm{C}) ; \delta_{\mathrm{F}}-84.03\left(\mathrm{q},{ }^{3} J_{\mathrm{F}, \mathrm{H}}=17.3 \mathrm{~Hz}, \mathrm{t},{ }^{4} J_{\mathrm{F}, \mathrm{H}}=2.6 \mathrm{~Hz}\right)$; $\delta_{\mathrm{Se}} 341.3\left({ }^{3} \mathrm{~J}_{\mathrm{Se}, \mathrm{F}}=15.8 \mathrm{~Hz}\right)$.
(E)-4-Fluoro-3-phenylselenooct-3-ene 15 a and (E)-3-fluoro-4-phenylselenooct-3-ene 15b. Yield (colorless oil): $0.79 \mathrm{~g}(69 \%)$. HR-MS: $m / z \quad \mathrm{M}^{+}: 286.06573$ (calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{FSe}$: 286.06359 , related to ${ }^{80} \mathrm{Se}$).

15a: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.63\left({ }^{4} \mathrm{~J}_{\mathrm{F}, \mathrm{C}}=1.7 \mathrm{~Hz}, \mathrm{C}-1\right), 24.19\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=7.0\right.$ $\mathrm{Hz}, \mathrm{C}-2), 111.41\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=20.7 \mathrm{~Hz}, \mathrm{C}-3\right), 162.98\left({ }^{1} J_{\mathrm{F}, \mathrm{C}}=267.1 \mathrm{~Hz}\right.$, C-4), $31.13\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=28.1 \mathrm{~Hz}, \mathrm{C}-5\right), 29.09(\mathrm{C}-6), 22.14(\mathrm{C}-7), 13.92$ (C-8); Ph: $130.99\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=1.7 \mathrm{~Hz}, i-\mathrm{C}\right), 130.40(o-\mathrm{C}), 129.15$ $(m-\mathrm{C}), 126.38(p-\mathrm{C}) ; \delta_{\mathrm{F}}-92.73\left(\mathrm{t},{ }^{3} J_{\mathrm{FH}}=23.1 \mathrm{~Hz}, \mathrm{t},{ }^{4} J_{\mathrm{F}, \mathrm{H}}=\right.$ $2.5 \mathrm{~Hz}) ; \delta_{\mathrm{Se}} 331.8\left({ }^{3} J_{\mathrm{Se}, \mathrm{F}}=17.3 \mathrm{~Hz}\right)$.

15b: $\delta_{\mathrm{C}} 11.62(\mathrm{C}-1), 25.08\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=28.9 \mathrm{~Hz}, \mathrm{C}-2\right), 164.57\left({ }^{1} J_{\mathrm{F}, \mathrm{C}}\right.$ $=267.1 \mathrm{~Hz}, \mathrm{C}-3), 108.95\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=21.1 \mathrm{~Hz}, \mathrm{C}-4\right), 30.37\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=5.8\right.$ $\mathrm{Hz}, \mathrm{C}-5), 30.72\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=1.7 \mathrm{~Hz}, \mathrm{C}-6\right), 22.11(\mathrm{C}-7), 13.87(\mathrm{C}-8)$; $\mathrm{Ph}: 131.02\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=1.7 \mathrm{~Hz}, i-\mathrm{C}\right), 130.33(o-\mathrm{C}), 129.14(\mathrm{~m}-\mathrm{C})$, $126.38(p-\mathrm{C}) ; \delta_{\mathrm{F}}-94.10\left(\mathrm{t},{ }^{3} J_{\mathrm{F}, \mathrm{H}}=22.7 \mathrm{~Hz}, \mathrm{t},{ }^{4} J_{\mathrm{F}, \mathrm{H}}=2.7 \mathrm{~Hz}\right)$; $\delta_{\mathrm{se}} 335.6\left({ }^{3} J_{\mathrm{Se}, \mathrm{F}}=15.8 \mathrm{~Hz}\right)$.
(E)-4-Fluoro-2-methyl-3-phenylselenooct-3-ene 16a and (E)-3-fluoro-2-methyl-4-phenylselenooct-3-ene 16b. Yield (colorless oil): $0.69 \mathrm{~g}(58 \%)$. HR-MS: $\mathrm{m} / \mathrm{M}^{+}: 300.08224$ (calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{FSe}: 300.07924$, related to $\left.{ }^{80} \mathrm{Se}\right)$.

16a: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 21.89\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=2.1 \mathrm{~Hz}, \mathrm{C}-1\right), 29.41\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=7.0\right.$ $\mathrm{Hz}, \mathrm{C}-2), 116.39\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=18.2 \mathrm{~Hz}, \mathrm{C}-3\right), 164.07\left({ }^{1} J_{\mathrm{F}, \mathrm{C}}=268.8 \mathrm{~Hz}\right.$, C-4), $31.56\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=28.1 \mathrm{~Hz}, \mathrm{C}-5\right), 28.87(\mathrm{C}-6), 22.18(\mathrm{C}-7), 13.86$ (C-8); Ph: $132.60\left({ }^{4} J_{\mathrm{FC}}=2.1 \mathrm{~Hz}, i-\mathrm{C}\right), 129.17(o-\mathrm{C}), 129.02$ $(m-\mathrm{C}), 125.90(p-\mathrm{C}) ; \delta_{\mathrm{F}}-90.51\left(\mathrm{t},{ }^{3} J_{\mathrm{F}, \mathrm{H}}=23.1 \mathrm{~Hz}\right) ; \delta_{\mathrm{Se}} 276.8$ $\left({ }^{3} J_{\mathrm{Se}, \mathrm{F}}=13.7 \mathrm{~Hz}\right)$.

16b: $\delta_{\mathrm{C}} 19.64\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=0.8 \mathrm{~Hz}, \mathrm{C}-1\right), 30.51\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=27.3 \mathrm{~Hz}, \mathrm{C}-2\right)$, $167.04\left({ }^{1} J_{\mathrm{F}, \mathrm{C}}=271.3 \mathrm{~Hz}, \mathrm{C}-3\right), 107.66\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=21.5 \mathrm{~Hz}, \mathrm{C}-4\right)$, $30.33\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=6.6 \mathrm{~Hz}, \mathrm{C}-5\right), 30.72\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=1.7 \mathrm{~Hz}, \mathrm{C}-6\right), 22.04$ (C-7), $13.92(\mathrm{C}-8) ; \mathrm{Ph}: 131.07\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=2.1 \mathrm{~Hz}, i-\mathrm{C}\right), 130.31(o-\mathrm{C})$, $129.15(m-\mathrm{C}), 126.34(p-\mathrm{C}) ; \delta_{\mathrm{F}}-107.73\left(\mathrm{~d},{ }^{3} J_{\mathrm{F}, \mathrm{H}}=30.6 \mathrm{~Hz}, \mathrm{t}\right.$, $\left.{ }^{4} J_{\mathrm{F}, \mathrm{H}}=2.7 \mathrm{~Hz}\right) ; \delta_{\mathrm{Se}} 331.1\left({ }^{3} J_{\mathrm{Se}, \mathrm{F}}=16.6 \mathrm{~Hz}\right)$.
(E)-4-Fluoro-2,2-dimethyl-3-phenylselenooct-3-ene 17a and (()-3-Fluoro-2,2-dimethyl-4-phenylselenooct-3-ene 17b. Yield (colorless oil): $0.31 \mathrm{~g}(25 \%)$. HR-MS: $m / z \mathrm{M}^{+}$: 314.09622 (calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{FSe} 314.09489$, related to ${ }^{80} \mathrm{Se}$).

17a: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 31.13\left({ }^{4} \mathrm{~J}_{\mathrm{F}, \mathrm{C}}=4.5 \mathrm{~Hz}, \mathrm{C}-1\right), 37.54(\mathrm{C}-2)$, $117.62\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=14.1 \mathrm{~Hz},{ }^{1} J_{\mathrm{Se}, \mathrm{C}}=105.7 \mathrm{~Hz}, \mathrm{C}-3\right), 165.48\left({ }^{1} J_{\mathrm{FCC}}=\right.$ $\left.275.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{Se}, \mathrm{C}}=17.0 \mathrm{~Hz}, \mathrm{C}-4\right), 33.59\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=29.4 \mathrm{~Hz}, \mathrm{C}-5\right)$, 29.26 (C-6), 22.15 (C-7), $13.88(\mathrm{C}-8)$; $\mathrm{Ph}: 133.53\left({ }^{4} J_{\mathrm{F}, \mathrm{C}}=2.5 \mathrm{~Hz}\right.$, $i-\mathrm{C}), 128.62\left({ }^{2} J_{\mathrm{Se}, \mathrm{C}}=12.0 \mathrm{~Hz}, o-\mathrm{C}\right), 129.07(m-\mathrm{C}), 125.67(p-\mathrm{C})$; $\delta_{\mathrm{F}}-78.82\left(\mathrm{t},{ }^{3} J_{\mathrm{FH}}=23.4 \mathrm{~Hz}\right) ; \delta_{\mathrm{Se}} 341.6\left({ }^{3} J_{\mathrm{Se}, \mathrm{F}}=14.4 \mathrm{~Hz}\right)$.

17b: $\delta_{\mathrm{C}} 167.75\left({ }^{1} J_{\mathrm{F}, \mathrm{C}}=270.0 \mathrm{~Hz}, \mathrm{C}-3\right), 107.85\left({ }^{2} J_{\mathrm{F}, \mathrm{C}}=27.7 \mathrm{~Hz}\right.$, $\mathrm{C}-4) ; \delta_{\mathrm{F}}-84.54(\mathrm{~s}) ; \delta_{\mathrm{Se}} 331.1\left({ }^{3} \mathrm{~J}_{\mathrm{Se}, \mathrm{F}}=20.2 \mathrm{~Hz}\right)$.

(\boldsymbol{E})-4-Bromo-5-phenylselenooct-4-ene 10

To PhSeBr [prepared from $1 \mathrm{mmol}_{\mathrm{Ph}_{2} \mathrm{Se}_{2}(312 \mathrm{mg}) \text { and } 1 \mathrm{mmol}}$ $\mathrm{Br}_{2}\left(1 \mathrm{ml}, 1 \mathrm{M}\right.$ in $\left.\left.\mathrm{CCl}_{4}\right)\right]$ in $10 \mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}$ at room temperature, oct-4-yne $\mathbf{1}(2 \mathrm{mmol}, 220 \mathrm{mg})$ was added and the mixture was stirred for 2 h at room temperature. After evaporation of the solvent the product was chromatographed through a short silica gel column with hexane. Yield 10 (colorless oil): $0.64 \mathrm{~g}(92 \%)$;

HR-MS: m/z M ${ }^{+}$: 345.98562 (calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrSe}$ 345.98353, related to ${ }^{80} \mathrm{Se}$ and $\left.{ }^{79} \mathrm{Br}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.48(\mathrm{C}-1)$, $21.30(\mathrm{C}-2), 40.65(\mathrm{C}-3), 129.48(\mathrm{C}-4), 129.21(\mathrm{C}-5), 43.29\left({ }^{2} J_{\mathrm{Se}, \mathrm{C}}\right.$ $=9.5 \mathrm{~Hz}, \mathrm{C}-6), 21.87(\mathrm{C}-7), 13.03(\mathrm{C}-8)$; Ph: $130.59(i-\mathrm{C}), 132.07$ $\left({ }^{2} J_{\mathrm{Se}, \mathrm{C}}=11.4 \mathrm{~Hz}, o-\mathrm{C}\right), 129.13(m-\mathrm{C}), 127.04(p-\mathrm{C}) ; \delta_{\mathrm{Se}} 398.8$.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. H. P. was supported by the state of Berlin under the HSP III program.

References

1 S. Tomoda and Y. Usuki, Chem. Lett., 1989, 1235.
2 Y. Usuki, M. Iwaoka and S. Tomoda, Chem. Lett., 1992, 1507.
3 J. R. McCarthy, D. P. Matthews and C. L. Barney, Tetrahedron Lett., 1990, 31, 973.
4 K. C. Nicolaou, N. A. Petasis and D. A. Claremon, Tetrahedron, 1985, 41, 4835.
5 C. Saluzzo, G. Alvernhe, D. Anker and G. Haufe, Tetrahedron Lett., 1990, 31, 663.
6 C. Saluzzo, A.-M. La Spina, D. Picq, G. Alvernhe, D. Anker, D. Wolf and G. Haufe, Bull. Soc. Chim. Fr., 1994, 131, 831.

7 C. Saluzzo, G. Alvernhe, D. Anker and G. Haufe, Tetrahedron Lett., 1990, 31, 2127.
8 K. Uneyama and M. Kanai, Tetrahedron Lett., 1990, 31, 3583.
9 K. Uneyama, S. Hiraoka and H. Amii, J. Fluorine Chem., 2000, 102, 215.

10 K. Uneyama, H. Asai, Y. Dan-oh and H. Matta, Electrochim. Acta, 1997, 42, 2005.
11 K. Uneyama, H. Asai, Y. Dan-oh and H. Funatsuki, Phosphorus Sulfur Silicon, 1997, 120, 121, 395.
12 H. Poleschner, M. Heydenreich, K. Spindler and G. Haufe, Synthesis, 1994, 1043.
13 (a) H. Poleschner, M. Heydenreich and U. Schilde, Liebigs Ann., 1996, 1187; (b) H. Poleschner and U. Schilde, Acta Crystallogr., Sect C, 1996, 52, 644.
14 H. Poleschner, M. Heydenreich and U. Schilde, Eur. J. Inorg. Chem., 2000, 1307.

15 (a) G. Schmid and D. G. Garratt, Tetrahedron Lett., 1975, 3991; (b) G. Schmid and D. G. Garratt, Chem. Scr., 1976, 10, 76.

16 S. Murata and T. Suzuki, Chem. Lett., 1987, 849.
17 (a) T. G. Back and K. R. Muralidharan, Tetrahedron Lett., 1990, 31, 1957; (b) T. G. Back and K. R. Muralidharan, J. Org. Chem., 1991, 56, 2781.
18 For reviews on triethylamine tris(hydrofluoride) in synthesis: (a) G. Haufe, J. Prakt. Chem., 1996, 338, 99; (b) M. A. McClinton, Aldrichim. Acta, 1995, 28, 31; (c) N. Yoneda, Tetrahedron, 1991, 47, 5329.

19 T. Wirth, Angew. Chem., 2000, 112, 3890.
20 (a) T. G. Back and Z. Moussa, Org. Lett., 2000, 2, 3007; (b) T. G. Back, B. P. Dyck and S. Nan, Tetrahedron, 1999, 55, 3191.

21 (a) M. Tiecco in Top. Curr. Chem., ed. T. Wirth, Springer, Berlin, Heidelberg, 2000, vol. 208, pp. 7-54.; (b) M. Tiecco, L. Testaferri, C. Santi, C. Tomassini, F. Marini, L. Bagnoli and A. Temperini, Eur. J. Org. Chem., 2000, 3451.
22 A. G. Kutateladze, J. L. Kice, T. G. Kutateladze, N. S. Zefirov and N. V. Zyk, Tetrahedron Lett., 1992, 33, 1949.

23 H. Poleschner, M. Heydenreich and R. Radeglia, Magn. Reson. Chem., 1999, 37, 333.
24 H. Poleschner and K. Seppelt, Magn. Reson. Chem., 2002, 40, 777.

25 J. D. Connolly, M. A. Russell, G. A. Sim and D. N. J. White, European Crystallography Meeting, 1985, 9, 257.
26 R. S. Cahn, C. Ingold and V. Prelog, Angew. Chem., 1966, 78, 413.
27 K. Schlögl in Top. Curr. Chem., eds. F. Vögtle and E. Weber, Springer, Berlin, Heidelberg, New York, Tokyo, 1984, vol. 125, pp. 27-62.
28 V. Jäger in Houben-Weyl, 4th edn., vol. 5/2a, Thieme, Stuttgart, 1977.

29 L. Brandsma, Preparative Acetylenic Chemistry, 2nd edn., Elsevier, Amsterdam, Oxford, New York, Tokyo, 1988.
30 E. Negishi and S. Baha, J. Am. Chem. Soc., 1975, 97, 7385.
31 G. Zweifel, G. M. Clark and N. L. Polston, J. Am. Chem. Soc., 1971, 93, 3395.
32 H. Meier, in Advances in Strain in Organic Chemistry, vol. 1, ed. B. Halton, JAI Press, Greenwich, CT, 1991, pp. 215-272.
33 G. M. Sheldrick, Program for Crystal Structure Solution, Universität Göttingen, Germany, 1986.
34 G. M. Sheldrick, Program for Crystal Structure Refinement, Universität Göttingen, Germany, 1993.

[^0]: \dagger Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. CCDC reference number 184423. See http:// www.rsc.org/suppdata/p1/b2/b207886b/ for crystallographic files in .cif or other electronic format.

